Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
نویسندگان
چکیده
The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملNeuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کاملChronic Morphine Preconditioning: Interaction of mTOR and iNOS in protection against Ischemia/Reperfusion injury
Chronic morphine (CM) treatment increases the phosphorylation of the mammalian target of rapamycin (mTOR), which confers neuroprotection against ischemia/reperfusion (I/R) injury. Besides its important regulatory role in the proliferation, metabolism, and survival of cells, the mTOR is critically involved in intracellular signaling events during I/R injury. In the present study, we investigated...
متن کاملChronic Morphine Preconditioning: Interaction of mTOR and iNOS in protection against Ischemia/Reperfusion injury
Chronic morphine (CM) treatment increases the phosphorylation of the mammalian target of rapamycin (mTOR), which confers neuroprotection against ischemia/reperfusion (I/R) injury. Besides its important regulatory role in the proliferation, metabolism, and survival of cells, the mTOR is critically involved in intracellular signaling events during I/R injury. In the present study, we investigated...
متن کاملP38: Neuroanatomy of Post Traumatic Stress Disorder
Posttraumatic stress disorder (PTSD) is a disorder of emotional and mental stress occurring as an outcome of injury or severe emotional shock. Several Neuroimaging studies in humans have shown the functions and relationship between the anatomical changes of brain and PTSD. The three major areas of the brain are affected by PTSD .These three areas are the amygdala, hippocampus and prefrontal cor...
متن کامل